Rabu, 29 Oktober 2008
misteri-bilangan-lubang-hitam
Ternyata, dalam matematika juga ada fenomena unik yang mirip dengan fenomena lubang hitam yaitu bilangan lubang hitam. Bagaimana sebenarnya bilangan lubang hitam itu? Mari kita bermain-main sebentar dengan angka.
Coba pilih sesuka hati Anda sebuah bilangan asli (bilangan mulai dari 1 sampai tak hingga). Sebagai contoh, katakanlah 141.985. Kemudian hitunglah jumlah digit genap, digit ganjil, dan total digit bilangan tersebut. Dalam kasus ini, kita dapatkan 2 (dua buah digit genap), 4 (empat buah digit ganjil), dan 6 (enam adalah jumlah total digit). Lalu gunakan digit-digit ini (2, 4, dan 6) untuk membentuk bilangan berikutnya, yaitu 246.
Ulangi hitung jumlah digit genap, digit ganjil, dan total digit pada bilangan 246 ini. Kita dapatkan 3 (digit genap), 0 (digit ganjil), dan 3 (jumlah total digit), sehingga kita peroleh 303. Ulangi lagi hitung jumlah digit genap, ganjil, dan total digit pada bilangan 303. (Catatan: 0 adalah bilangan genap). Kita dapatkan 1, 2, 3 yang dapat dituliskan 123.
Jika kita mengulangi langkah di atas terhadap bilangan 123, kita akan dapatkan 123 lagi. Dengan demikian, bilangan 123 melalui proses ini adalah lubang hitam bagi seluruh bilangan lainnya. Semua bilangan di alam semesta akan ditarik menjadi bilangan 123 melalui proses ini, tak satu pun yang akan lolos.
Tapi benarkah semua bilangan akan menjadi 123? Sekarang mari kita coba suatu bilangan yang bernilai sangat besar, sebagai contoh katakanlah 122333444455555666666777777788888888999999999. Jumlah digit genap, ganjil, dan total adalah 20, 25, dan 45. Jadi, bilangan berikutnya adalah 202.545. Lakukan lagi iterasi (pengulangan), kita peroleh 4, 2, dan 6; jadi sekarang kita peroleh 426. Iterasi sekali lagi terhadap 426 akan menghasilkan 303 dan iterasi terakhir dari 303 akan diperoleh 123. Sampai pada titik ini, iterasi berapa kali pun terhadap 123 akan tetap diperoleh 123 lagi. Dengan demikian, 123 adalah titik absolut sang lubang hitam dalam dunia bilangan.
Namun, apakah mungkin saja ada suatu bilangan, terselip di antara rimba raya alam semesta bilangan yang jumlahnya tak terhingga ini, yang dapat lolos dari jeratan maut sang bilangan lubang hitam, sang 123 yang misterius ini?
Selasa, 28 Oktober 2008
Lima Emas Disabet Tim Indonesia Dalam Kontes Matematika
Menyambut Hari Anak Nasional pada 23 Juli kali ini, Indonesia mendapat hadiah yang menggemberikan. Indonesia membuktikan bahwa generasi mudanya masih banyak yang unggul, baik dari segi mental maupun kemampuan. Buktinya, dalam beberapa lomba ilmu pengetahuan, Indonesia selalu berhasil menyabet medali. Pada ajang olimpiade fisika dunia, bahkan Indonesia tak pernah absen mendapat medali emas.
Dan, baru-baru ini yang membuat bangga adalah giliran tim matematika. Delapan siswa SD Indonesia meraih sukses dalam kontes matematika The 12th Po Leung Kuk Primary Mathematics World Contest (PMWC) 2008 yang diselengarakan di Hong Kong. Tim Indonesia yang dibagi dalam dua tim berhasil menyabet lima medali emas, dua perak, dan satu perunggu untuk kategori individu.
Lima medali emas masing-masing diperoleh Richard Akira Heru (SD PL Bernadus Semarang), Peter Tirtowijoyo Young (SD Santa Maria Surabaya), Stefano Chiesa Suryanto (SD Santa Theresia Jakarta), Christa Lorenzia Soesanto (SD Tirta Martha BPK Penabur Jakarta), dan Fransisca Susan (SD Santa Ursula Jakarta). Sedangkan medali perak diraih Nicholas Tarino (SD Stella Maris Tangerang) dan Vincent (SDK BPK XI Penabur Jakarta). Terakhir, Reynaldi Satrio Nugroho (SD Al-Azhar Kemang Pratama, Bekasi) berhasil menyabet medali perunggu.
Selain di kategori Individu, Indonesia juga berlaga dikategori tim. Hasilnya, tim Indonesia 1 berhasil meraih medali perak. Yang lebih membanggakan yaitu bahwa Indonesia menjadi satu dari enam tim yang meraih The Champion untuk penampilan terbaik bersama Amerika Serikat, Bulgaria, China, Filipina, dan Taiwan.
Tahun ini merupakan tahun ketiga bagi tim Indonesia berkompetisi di ajang ini. Tentu saja ini suatu prestasi yang luar biasa karena mereka berhasil menyisihkan lawan-lawannya yang datang dari 15 negara, Amerika Serikat, Afrika Selatan, Australia, Bulgaria, China, Hongkong, India, Indonesia, Makau, Malaysia, Meksiko, Filipina, Singapura, Taiwan, dan Thailand.
Hasil ini merupakan pembuktian bahwa siswa Indonesia walaupun di usia yang masih belia mampu berprestasi di kancah internasional. Semoga akan ada lagi prestasi-prestasi gemilang selanjutnya.
AL-JABAR
Aljabar (Algebra) adalah cabang matematika yang mempelajari struktur, hubungan dan kuantitas. Untuk mempelajari hal-hal ini dalam aljabar digunakan simbol (biasanya berupa huruf) untuk merepresentasikan bilangan secara umum sebagai sarana penyederhanaan dan alat bantu memecahkan masalah. Contohnya, x mewakili bilangan yang diketahui dan y bilangan yang ingin diketahui. Sehingga bila Andi mempunyai x buku dan kemudian Budi mempunyai 3 buku lebih banyak daripada Andi, maka dalam aljabar, buku Budi dapat ditulis sebagai y = x + 3. Dengan menggunakan aljabar, Anda dapat menyelidiki pola aturan aturan bilangan umumnya. Aljabar dapat diasumsikan dengan cara memandang benda dari atas, sehingga kita dapat menemukan pola umumnya.
Aljabar telah digunakan matematikawan sejak beberapa ribu tahun yang lalu. Sejarah mencatat penggunaan aljabar telah dilakukan bangsa Mesopotamia pada 3.500 tahun yang lalu. Nama Aljabar berasal dari kitab yang ditulis pada tahun 830 oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi dengan judul ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti "The Compendious Book on Calculation by Completion and Balancing"), yang menerapkan operasi simbolik untuk mencari solusi secara sistematik terhadap persamaan linier dan kuadratik. Salah satu muridnya, Omar Khayyam menerjemahkan hasil karya Al-Khwarizmi ke bahasa Eropa. Beberapa abad yang lalu, ilmuwan dan matematikawan Inggris, Isaac Newton (1642-17 27) menunjukkan, kelakuan sesuatu di alam dapat dijelaskan dengan aturan atau rumus matematika yang melibatkan aljabar, yang dikenal sebagai Rumus Gravitasi Newton.
Aljabar bersama-sama dengan Geometri, Analisis dan Teori Bilangan adalah cabang-cabang utama dalam Matematika. Aljabar Elementer merupakan bagian dari kurikulun dalam sekolah menengah dan menyediakan landasan bagi ide-ide dasar untuk Ajabar secara keseluruhan, meliputi sifat-sifat penambahan dan perkalian bilangan, konsep variabel, definisi polinom, faktorisasi dan menentukan akar pangkat.
Sekarang ini istilah Aljabar mempunyai makna lebih luas daripada sekedar Aljabar Elementer, yaitu meliputi Ajabar Abstrak, Aljabar Linier dan sebagainya. Seperti dijelaskan di atas dalam aljabar, kita tidak bekerja secara langsung dengan bilangan melainkan bekerja dengan menggunakan simbol, variabel dan elemen-elemen himpunan. Sebagai contoh Penambahan dan Perkalian dipandang sebagai operasi secara umum dan definisi ini menuju pada struktur bilangan seperti Grup, Ring, dan Medan (fields).
Asal Mula Aljabar
Asal mula Aljabar dapat ditelusuri berasal dari bangsa Babilonia Kuno yang mengembangkan sistem aritmatika yang cukup rumit, dengan hal ini mereka mampu menghitung dalam cara yang mirip dengan aljabar sekarang ini. Dengan menggunakan sistem ini, mereka mampu mengaplikasikan rumus dan menghitung solusi untuk nilai yang tak diketahui untuk kelas masalah yang biasanya dipecahkan dengan menggunakan persamaan Linier, Persamaan Kuadrat dan Persamaan Linier tak tentu. Sebaliknya, bangsa Mesir, dan kebanyakan bangsa India, Yunani, serta Cina dalam milenium pertama sebelum masehi, biasanya masih menggunakan metode geometri untuk memecahkan persamaan seperti ini, misalnya seperti yang disebutkan dalam ‘the Rhind Mathematical Papyrus’, ‘Sulba Sutras’, ‘Euclid's Elements’, dan ‘The Nine Chapters on the Mathematical Art’. Hasil karya bangsa Yunani dalam Geometri, yang tertulis dalam kitab Elemen, menyediakan kerangka berpikir untuk menggeneralisasi formula matematika di luar solusi khusus dari suatu permasalahan tertentu ke dalam sistem yang lebih umum untuk menyatakan dan memecahkan persamaan, yaitu kerangka berpikir logika Deduksi.
Seperti telah disinggung di atas istilah ‘Aljabar’ berasal dari kata arab "al-jabr" yang berasal dari kitab ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti "The Compendious Book on Calculation by Completion and Balancing"), yang ditulis oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi. Kata ‘Al-Jabr’ sendiri sebenarnya berarti penggabungan (reunion). Matematikawan Yunani di jaman Hellenisme, Diophantus, secara tradisional dikenal sebagai ‘Bapak Aljabar’, walaupun sampai sekarang masih diperdebatkan siapa sebenarnya yang berhak atas sebutan tersebut Al-Khwarizmi atau Diophantus?. Mereka yang mendukung Al-Khwarizmi menunjukkan fakta bahwa hasil karyanya pada prinsip reduksi masih digunakan sampai sekarang ini dan ia juga memberikan penjelasan yang rinci mengenai pemecahan persamaan kuadratik. Sedangkan mereka yang mendukung Diophantus menunjukkan Aljabar ditemukan dalam Al-Jabr adalah masih sangat elementer dibandingkan Aljabar yang ditemukan dalam ‘Arithmetica’, karya Diophantus. Matematikawan Persia yang lain, Omar Khayyam, membangun Aljabar Geometri dan menemukan bentuk umum geometri dari persamaan kubik. Matematikawan India Mahavira dan Bhaskara, serta Matematikawan Cina, Zhu Shijie, berhasil memecahkan berbagai macam persamaan kubik, kuartik, kuintik dan polinom tingkat tinggi lainnya.
Peristiwa lain yang penting adalah perkembangan lebih lanjut dari aljabar, terjadi pada pertengahan abad ke-16. Ide tentang determinan yang dikembangkan oleh Matematikawan Jepang Kowa Seki di abad 17, diikuti oleh Gottfried Leibniz sepuluh tahun kemudian, dengan tujuan untuk memecahkan Sistem Persamaan Linier secara simultan dengan menggunakan Matriks. Gabriel Cramer juga menyumbangkan hasil karyanya tentang Matriks dan Determinan di abad ke-18. Aljabar Abstrak dikembangkan pada abad ke-19, mula-mula berfokus pada teori Galois dan pada masalah keterkonstruksian (constructibility)
Tahap-tahap perkembangan Aljabar simbolik secara garis besar adalah sebagai berikut:
- Aljabar Retorik (Rhetorical algebra), yang dikembangkan oleh bangsa Babilonia dan masih mendominasi sampai dengan abad ke-16;
- Aljabar yang dikontruksi secara Geometri, yang dikembangkan oleh Matematikawan Vedic India dan Yunani Kuno;
- Syncopated algebra, yang dikembangkan oleh Diophantus dan dalam ‘the Bakhshali Manuscript’; dan
- Aljabar simbolik (Symbolic algebra), yang titik puncaknya adalah pada karya Leibniz.
Klasifikasi dari Aljabar
Aljabar secara garis besar dapat dibagi dalam kategori berikut ini:
1. Aljabar Elementer, yang mempelajari sifat-sifat operasi pada bilangan riil direkam dalam simbol sebagai konstanta dan variabel, dan Aturan yang membangun ekspresi dan persamaan Matematika yang melibatkan simbol-simbol.(bidang ini juga mencakup materi yang biasanya diajarkan di sekolah menengah yaitu ‘Intermediate Algebra’ dan ‘college algebra’);
2. Aljabar Abstrak, kadang-kadang disebut Aljabar Modern, yang mempelajari Struktur Aljabar semacam Grup, Ring dan Medan (fields) yang didefinisikan dan diajarkan secara aksiomatis;
3. Aljabar Linier, yang mempelajari sifat-sifat khusus dari Ruang Vektor (termasuk Matriks);
4. Aljabar Universal, yang mempelajari sifat-sifat bersama dari semua Struktur aljabar.
Dalam studi Aljabar lanjut, sistem aljabar aksiomatis semacam Grup, Ring, Medan dan Aljabar di atas sebuah Medan (algebras over a field) dipelajari bersama dengan telaah Struktur Geometri Natural yang kompatibel dengan Struktur Aljabar tersebut dalam bidang Topologi.
Aljabar Elementer
Aljabar Elementer adalah bentuk paling dasar dari Aljabar, yang diajarkan pada siswa yang belum mempunyai pengetahuan Matematika apapun selain daripada Aritmatika Dasar. Meskipun seperti dalam Aritmatika, di mana bilangan dan operasi Aritmatika (seperti +, −, ×, ÷) muncul juga dalam Aljabar, tetapi disini bilangan seringkali hanya dinotasikan dengan simbol (seperti a, x, y). Hal ini sangat penting sebab: Hal ini mengijinkan kita menurunkan rumus umum dari aturan Aritmatika (seperti a + b = b + a untuk semua a dan b), dan selanjutnya merupakan langkah pertama untuk penelusuran yang sistematik terhadap sifat-sifat sistem bilangan riil.
Dengan menggunakan simbol, alih-alih menggunakan bilangan secara langsung, mengijinkan kita untuk membangun persamaan matematika yang mengandung variabel yang tidak diketahui (sebagai contoh “Carilah bilangan x yang memenuhi persamaan 3x + 1 = 10"). Hal ini juga mengijinkan kita untuk membuat relasi fungsional dari rumus-rumus matematika tersebut (sebagai contoh "Jika anda menjual x tiket, dan kemudian anda mendapat untung 3x - 10 rupiah, dapat dituliskan sebagai f(x) = 3x - 10, dimana f adalah fungsi, dan x adalah bilangan dimana fungsi f bekerja.")
Aritmatika
ym>Aritmatika atau aritmetika (dari kata bahasa Yunani αριθμός = angka) atau dulu disebut Ilmu Hitung merupakan cabang tertua (atau pendahulu) matematika yang mempelajari operasi dasar bilangan. Oleh orang awam, kata "aritmatika" sering dianggap sebagai sinonim dari Teori Bilangan, tetapi bidang ini adalah bidang Aritmatika tingkat Lanjut yang berbeda dengan Aritmatika Dasar.
Sejarah
Peninggalan prasejarah tentang Aritmatika sangat terbatas pada beberapa artifak yang mengindikasikan adanya konsep Penambahan dan Pengurangan, yang paling terkenal adalah ‘The Ishango Bone’ di Afrika, diperkirakan berasal dari tahun 18.000 SM.
Tampak jelas bahwa bangsa Babilonia sudah memiliki hampir semua aspek dari Aritmatika Dasar (1850 SM), walaupun mereka tidak menggunakan basis desimal untuk menghitungnya. Mengenai konsep Perkalian dan Pembagian dapat ditemukan pada ‘Rind Mathematical Papyrus’ dari Mesir Kuno pada 1650 SM.
Algoritma Modern untuk Aritmatika (baik untuk manual maupun untuk komputasi) merupakan perkembangan dari angka Arab dan konsep notasi Desimal. Meskipun sekarang hal ini kelihatannya begitu sederhana, tetapi perkembangan ini merupakan puncak dari ribuan tahun perkembangan matematika kuno. Penemuan Aljabar selama peradaban Islam dan selama masa Renaisans Eropa merupakan perkembangan lebih lanjut dari penyederhanaan perhitungan melalui notasi Desimal ini.
Aritmatika Desimal
Notasi Desimal mengkonstruksi semua bilangan riil menjadi digit-digit, yang masing-masing dapat terdiri dari 10 macam simbol, yaitu: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Setiap digit ini berkaitan dengan Posisinya yang relatif terhadap Titik Desimal., sebagai contoh 507.36 mempunyai arti 5 ratus (10^2), ditambah 7 satuan (10^0), ditambah 3 persepuluh (10^-1), dan ditambah 6 perseratus (10^-2). Bagian esensial di sini adalah adanya bilangan nol (0) sebagai simbol dasar dari notasi desimal, secara harfiah simbol nol berarti kosong. Selanjutnya Algoritma untuk Aritmatika Desimal menggunakan sistem nilai tempat atau Notasi Posisi ini, dimana setiap digit dalam bilangan mempunyai bobotnya masing-masing, untuk melakukan operasi dasar Aritmatika, yaitu: penambahan, pengurangan, perkalian dan pembagian.
Operasi aritmatika
Operasi dasar aritmatika adalah penjumlahan, pengurangan, perkalian dan pembagian, walaupun operasi-operasi lain yang lebih canggih (seperti persentase, akar kuadrat, pemangkatan, dan logaritma) kadang juga dimasukkan ke dalam kategori ini. Perhitungan dalam aritmatika dilakukan menurut suatu urutan operasi yang menentukan operasi aritmatika yang mana lebih dulu dilakukan.
Aritmatika bilangan asli, bilangan bulat, bilangan rasional, dan bilangan real umumnya dipelajari oleh anak sekolah, yang mempelajari algoritma manual aritmatika. Namun demikian, banyak orang yang lebih suka menggunakan alat-alat seperti kalkulator, komputer, atau sempoa untuk melakukan perhitungan aritmatika.
1. Penjumlahan (+) adalah salah satu operasi aritmatika dasar. Penjumlahan merupakan penambahan dua bilangan menjadi suatu bilangan yang merupakan Jumlah. Penambahan lebih dari dua bilangan dapat dipandang sebagai operasi Penambahan berulang, prosedur ini dikenal sebagai Penjumlahan Total (summation), yang mencakup juga penambahan dari barisan bilangan tak hingga banyaknya (infinite).
Penjumlahan mempunyai sifat Komutatif dan Assosiatif, oleh karena itu urutan penjumlahan tidak mempengaruhi hasilnya. Elemen identitas dari penjumlahan adalah nol (0), disini penambahan sembarang bilangan dengan identitas (nol) akan tidak akan merubah angka tersebut. Selanjutnya elemen bilangan invers dari penambahan adalah negatif dari bilangan itu sendiri, di sini penambahan suatu bilangan dengan inversnya akan menghasilkan identitas (nol).
2. Pengurangan (-) adalah lawan dari operasi penjumlahan. Pengurangan mencari ‘perbedaan’ antara dua bilangan A dan B (A-B), hasilnya adalah Selisih dari dua bilangan A dan B tersebut. Bila Selisih bernilai positif maka nilai A lebih besar daripada B, bila Selisih sama dengan nol maka nilai A sama dengan nilai B dan terakhir bila Selisih bernilai negatif maka nilai A lebih kecil daripada nilai B.
Pengurangan tidak mempunyai sifat baik Komutatif maupun Assosiatif. Oleh karena hal ini, terkadang pengurangan dipandang sebagai penambahan suatu bilangan dengan negatif bilangan lainnya, a - b = a + (-b). Dengan cara penulisan ini maka sifat Komutatif dan Assosiatif akan dipenuhi.
3. Perkalian (*) pada intinya adalah penjumlahan yang berulang-ulang. Perkalian dua bilangan menghasilkan Hasil Kali (product), sebagai contoh 4*3 = 4+4+4 = 12.
Perkalian, dipandang sebagai penjumlahan berulang, tentunya mempunyai sifat Komutatif dan Assosiatif. Lebih jauh lagi perkalian mempunyai sifat Distributif atas Penambahan dan Pengurangan. Elemen identitas untuk perkalian adalah satu (1), disini perkalian sembarang bilangan dengan identitas (satu) akan tidak akan merubah angka tersebut. Selanjutnya elemen bilangan invers dari perkalian adalah satu-per-bilangan itu sendiri, di sini perkalian suatu bilangan dengan inversnya akan menghasilkan identitas (satu).
4. Pembagian (/) adalah lawan dari perkalian. Pembagian dua bilangan A dan B (A/B) akan menghasilkan Hasil Bagi (quotient). Sembarang pembagian dengan bilangan nol (0) tidak didefinisikan. Selanjutnya bila nilai Hasil Bagi lebih dari satu, berarti nilai A lebih besar daripada nilai B, bilai Hasil Bagi sama dengan satu, maka berarti nilai A sama dengan nilai B, dan terakhir bila Hasil Baginya kurang dari satu maka nilai A kurang dari nilai B.
Pembagian tidak bersifat Komunitatif maupun Assosiatif. Sebagaimana Pengurangan dapat dipandang sebagai kasus khusus dari penambahan, demikian pula Pembagian dapat dipandang sebagai Perkalian dengan elemen invers pembaginya, sebagai contoh A/B =A*(1/B). Dengan cara penulisan seperti ini maka semua sifat-sifat perkalian seperti Komunitatif dan Assosiatif akan dipenuhi oleh Pembagian.
misteri bilangan nol
ym>Ratusan tahun yang lalu, manusia hanya mengenal 9 lambang bilangan yakni 1, 2, 2, 3, 5, 6, 7, 8, dan 9. Kemudian, datang angka 0, sehingga jumlah lambang bilangan menjadi 10 buah. Tidak diketahui siapa pencipta bilangan 0, bukti sejarah hanya memperlihatkan bahwa bilangan 0 ditemukan pertama kali dalam zaman Mesir kuno. Waktu itu bilangan nol hanya sebagai lambang. Dalam zaman modern, angka nol digunakan tidak saja sebagai lambang, tetapi juga sebagai bilangan yang turut serta dalam operasi matematika. Kini, penggunaan bilangan nol telah menyusup jauh ke dalam sendi kehidupan manusia. Sistem berhitung tidak mungkin lagi mengabaikan kehadiran bilangan nol, sekalipun bilangan nol itu membuat kekacauan logika. Mari kita lihat.
Nol, penyebab komputer macet
Pelajaran tentang bilangan nol, dari sejak zaman dahulu sampai sekarang selalu menimbulkan kebingungan bagi para pelajar dan mahasiswa, bahkan masyarakat pengguna. Mengapa? Bukankah bilangan nol itu mewakili sesuatu yang tidak ada dan yang tidak ada itu ada, yakni nol. Siapa yang tidak bingung? Tiap kali bilangan nol muncul dalam pelajaran Matematika selalu ada ide yang aneh. Seperti ide jika sesuatu yang ada dikalikan dengan 0 maka menjadi tidak ada. Mungkinkah 5*0 menjadi tidak ada? (* adalah perkalian). Ide ini membuat orang frustrasi. Apakah nol ahli sulap?
Lebih parah lagi-tentu menambah bingung-mengapa 5+0=5 dan 5*0=5 juga? Memang demikian aturannya, karena nol dalam perkalian merupakan bilangan identitas yang sama dengan 1. Jadi 5*0=5*1. Tetapi, benar juga bahwa 5*0=0. Waw. Bagaimana dengan 5o=1, tetapi 50o=1 juga? Ya, sudahlah. Aturan lain tentang nol yang juga misterius adalah bahwa suatu bilangan jika dibagi nol tidak didefinisikan. Maksudnya, bilangan berapa pun yang tidak bisa dibagi dengan nol. Komputer yang canggih bagaimana pun akan mati mendadak jika tiba-tiba bertemu dengan pembagi angka nol. Komputer memang diperintahkan berhenti berpikir jika bertemu sang divisor nol.
Bilangan nol: tunawisma
Bilangan disusun berdasarkan hierarki menurut satu garis lurus. Pada titik awal adalah bilangan nol, kemudian bilangan 1, 2, dan seterusnya. Bilangan yang lebih besar di sebelah kanan dan bilangan yang lebih kecil di sebelah kiri. Semakin jauh ke kanan akan semakin besar bilangan itu. Berdasarkan derajat hierarki (dan birokrasi bilangan), seseorang jika berjalan dari titik 0 terus-menerus menuju angka yang lebih besar ke kanan akan sampai pada bilangan yang tidak terhingga. Tetapi, mungkin juga orang itu sampai pada titik 0 kembali. Bukankah dunia ini bulat? Mungkinkah? Bukankah Columbus mengatakan bahwa kalau ia berlayar terus-menerus ia akan sampai kembali ke Eropa?
Lain lagi. Jika seseorang berangkat dari nol, ia tidak mungkin sampai ke bilangan 4 tanpa melewati terlebih dahulu bilangan 1, 2, dan 3. Tetapi, yang lebih aneh adalah pertanyaan mungkinkan seseorang bisa berangkat dari titik nol? Jelas tidak bisa, karena bukankah titik nol sesuatu titik yang tidak ada? Aneh dan sulit dipercaya? Mari kita lihat lebih jauh.
Jika di antara dua bilangan atau antara dua buah titik terdapat sebuah ruas. Setiap bilangan mempunyai sebuah ruas. Jika ruas ini dipotong-potong kemudian titik lingkaran hitam dipindahkan ke tengah-tengah ruas, ternyata bilangan 0 tidak mempunyai ruas. Jadi, bilangan nol berada di awang-awang. Bilangan nol tidak mempunyai tempat tinggal alias tunawisma. Itulah sebabnya, mengapa bilangan nol harus menempel pada bilangan lain, misalnya, pada angka 1 membentuk bilangan 10, 100, 109, 10.403 dan sebagainya. Jadi, seseorang tidak pernah bisa berangkat dari angka nol menuju angka 4. Kita harus berangkat dari angka 1.
Mudah, tetapi salah
Guru meminta Ani menggambarkan sebuah garis geometrik dari persamaan 3x+7y = 25. Ani berpikir bahwa untuk mendapatkan garis itu diperlukan dua buah titik dari ujung ke ujung. Tetapi, setelah berhitung-hitung, ternyata cuma ada satu titik yang dilewati garis itu, yakni titik A(6, 1), untuk x=6 dan y=1. Sehingga Ani tidak bisa membuat garis itu. Sang guru mengingatkan supaya menggunakan bilangan nol. Ya, itulah jalan keluarnya. Pertama, berikan y=0 diperoleh x=(25-0)/3=8 (dibulatkan), merupakan titik pertama, B(8,0). Selanjutnya berikan x=0 diperoleh y=(25-3.0)/7=4 (dibulatkan), merupakan titik kedua C(0,4). Garis BC, adalah garis yang dicari. Namun, betapa kecewanya sang guru, karena garis itu tidak melalui titik A. Jadi, garis BC itu salah.
Ani membela diri bahwa kesalahan itu sangat kecil dan bisa diabaikan. Guru menyatakan bahwa bukan kecil besarnya kesalahan, tetapi manakah yang benar? Bukankah garis BC itu dapat dibuat melalui titik A? Kata guru, gunakan bilangan nol dengan cara yang benar. Bagaimana kita harus membantu Ani membuat garis yang benar itu? Mudah, kata konsultan Matematika. Mula-mula nilai 25 dalam 3x+7y harus diganti dengan hasil perkalian 3 dan 7 sehingga diperoleh 3x+7y=21.
Selanjutnya, dalam persamaan yang baru, berikan y=0 diperoleh x=21/3=7 (tanpa pembulatan) itulah titik pertama P(6,1). Kemudian berikan nilai x=0 diperoleh y=21/7 = 3 (tanpa pembulatan), itulah titik kedua Q(0, 3). Garis PQ adalah garis yang sejajar dengan garis yang dicari, yakni 3x+7y=25. Melalui titik A tarik garis sejajar dengan PQ diperoleh garis P1Q1. Nah, begitulah. Sang murid telah menemukan garis yang benar berkat bantuan bilangan nol.
Akan tetapi, sang guru masih sangat kecewa karena sebenarnya tidak ada satu garis pun yang benar. Bukankah dalam persamaan 3x1+7x2=25 hanya ada satu titik penyelesaian yakni titik A, yang berarti persamaan 3x1+7x2 itu hanya berbentuk sebuah titik? Bahkan pada persamaan 3x1+7x2=21 tidak ada sebuah titik pun yang berada dalam garis PQ. Oleh karena itu, garis PQ dalam sistem bilangan bulat, sebenarnya tidak ada. Aneh, bilangan nol telah menipu kita. Begitulah kenyataannya, sebuah persamaan tidak selalu berbentuk sebuah garis.
Bergerak, tetapi diam
Bilangan tidak hanya terdiri atas bilangan bulat, tetapi juga ada bilangan desimal antara lain dari 0,1; 0,01; 0,001; dan seterusnya sekuat-kuat kita bisa menyebutnya sampai sedemikian kecilnya. Karena sangat kecil tidak bisa lagi disebut atau tidak terhingga dan pada akhirnya dianggap nol saja. Tetapi, ide ini ternyata sempat membingungkan karena jika bilangan tidak terhingga kecilnya dianggap nol maka berarti nol adalah bilangan terkecil? Padahal, nol mewakili sesuatu yang tidak ada? Waw. Begitulah.
Berdasarkan konsep bilangan desimal dan kontinu, maka garis bilangan yang kita pakai ternyata tidak sesederhana itu karena antara dua bilangan selalu ada bilangan ke tiga. Jika seseorang melompat dari bilangan 1 ke bilangan 2, tetapi dengan syarat harus melompati terlebih dahulu ke bilangan desimal yang terdekat, bisakah? Berapakah bilangan desimal terdekat sebelum sampai ke bilangan 2? Bisa saja angka 1/2. Tetapi, anda tidak boleh melompati ke angka 1/2 karena masih ada bilangan yang lebih kecil, yakni 1/4. Seterusnya selalu ada bilangan yang lebih dekat... yakni 0,1 lalu ada 0,01, 0,001, ..., 0,000001. demikian seterusnya, sehingga pada akhirnya bilangan yang paling dekat dengan angka 1 adalah bilangan yang demikian kecilnya sehingga dianggap saja nol. Karena bilangan terdekat adalah nol alias tidak ada, maka Anda tidak pernah bisa melompat ke bilangan 2?